Curve-Flex Type RRJ - Jaw-Flex Couplings

Blue (RAL - 5015)
Hardness HTR 55 D
Temperature $-120^{\circ} \mathrm{C}$

Gray (RAL - 7000)
Hardness HTR 92 A
Temperature $-120^{\circ} \mathrm{C}$

Light Ivory (RAL - 1015)
Hardness HTR 65 D
Temperature $-120^{\circ} \mathrm{C}$

Selection Procedure

1. Determine Application Nominal Torque (Nm) Tnom (Nm) $=$ (kw x 9550/rpm)
2. Calculate application service factor using following charts Total service factor (SF) will be SF = SF1 x SF2 x SF3
3. Calculate Application Maximum Torque $\{$ Tmax) $\operatorname{Tmax}=$ Tnom X SF (Nm)
4. Select the proper spider showing Tnom greater than application nominal torque. Then select spider showing Tmax greater than application maximum torque. Selectthe higher of two.
5. Ensure that application rpm and max. bore requirements are less than or equal to selected coupling max. rpm and max. bore size otherwise select next size coupling.
SF1 - Application Service Factor

| Driven Machine / Example | Electric
 Motors | 4 Cylinder
 or more | Less than
 4 Cylinder |
| :--- | :---: | :---: | :---: | :---: |
| a. Uniform operation, no shocks. | 1.5 | 2.0 | 2.5 |
| b. Irregular operation, light shocks. | 2.0 | 2.5 | 3.0 |
| C. Irregular operation, medium shocks | 2.5 | 3.0 | 3.5 |
| D. Irregular operation, heavy shocks. | 3.0 | 3.5 | 4.0 |

SF2 - Application Service Factor for Temperature

Temperature Range ${ }^{\circ} \mathrm{C}$	$<30^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$>70^{\circ} \mathrm{C}$
SF 2	1.0	1.5	2.0

SF3 - Application Service Factor for starting frequency

Starting frequency cycles / hour	<100	$100-500$	>500
SF3	1.0	1.5	2.0

MISALIGNMENT DATA

Size	19	24	28	38	42	48	55	65	75	90
Maximum axial displacement (mm)	1.6	1.8	2.0	2.2	2.3	3.0	3.0	3.5	3.5	4.5
Maximum radial misalignment (mm)	0.15	0.20	0.20	0.25	0.30	0.35	0.35	0.40	0.45	0.50
Maximum angular misalignment (Deg.)	0.80	0.80	0.80	0.90	0.90	1.0	1.0	1.0	1.1	1.1

ORDER SEQUENCE	Coupling Size	Hub Type (Driver / Driven)	Finish Bore (Driver / Driven)	Spider Type	Hub Material
Example	RRJ-55	I/II	$40 / 60$	Spider Colour	$\mathbf{C l}$

Coupling with Blue Spider is supplied if not specified.
All dimensions are in mm unless otherwise specified.

POWER TRANSMISSIONS
INTERNATIONAL

Curve-Flex Type RRJ - Jaw-Flex Couplings

- All over machining - Inherently balanced
- No Lubrication, Maintenance free - Long life
- Compact design, High power to weight ratio
- Fail safe - Will perform even if spider fails
- Vibrations Damping, torsionally flexible
- Axial plug-in, easy to assemble

HUB TYPE I

HUB TYPE II

HUB TYPE III

Technical Data
RRJ - ALUMINIMUM (AL)

[^0]
[^0]: \# Weight \& Moment of Inertia (M.I.) of coupling assembly refer to maximum finish bore without keyway.

 * Alternative hub material available on request - Steel (Sizes 19 to 90), S. G. Iron (Sizes 38 to 90).

 All Dimensions are in mm.
 For vertical installation contact Rathi.
 Consult for Max Bore with Square Key.

