

Type L / SW / RRS - Jaw-Flex Couplings

With its unique wrap around Synthetic rubber connecting element, the Snap Wrap coupling eliminates the need for dismantling the connected equipment while inspecting or replacing the element - a major benefit when down-time on machinery can run into huge amounts.

Combined with a range of prebored hubs, a modular hub design and a spacer option, the Snap Wrap coupling is unsurpassed for quality, flexibility, speed of installation and maintenance.

Six ways the 'Snap Wrap' coupling can help pity for itself:

1. Prebored Hubs

Hubs bored and keyed to standard IEC motor shaft sizes at no extra cost.

2. Snap Wrap Element

Ease of inspection and replacement within 5 minutes.

3. Modular hub design

Both Models, SW & RRS use the same hubs.

4. Spacer Coupling

RRS spacer model is available for pump applications.

5. Fully Machined Hubs

Balance, ease of alignment and smooth contact surface for elements are assured.

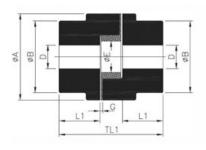
6. Any Environment

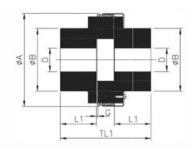
Water, oil, greases & dust do not affect performance.

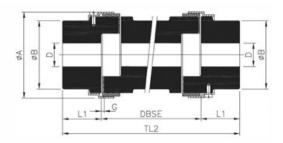
Type RRS Spacer Coupling

Spider (Synthetic/ PU/ H-Trans)

SW Spider (Synthetic/ PU / H-Trans)


SW Element (Synthetic/ PU/ H-Trans)


Website www.ptigroup.co.uk



Type L / SW / RRS - Jaw-Flex Couplings

Type L Type SW Type RRS

Technical Data

Coupling		Power Rating						Dilas		~.		Length					
		Synthetic Rubber		Polyurethane		H-Trans		Pilot	Max. Bore	ØA		thru'	ØВ	Gap	ØE	DBSE	Overall
Туре	Size	Rated Torque (Nm)	kW@ 100 rpm	Rated Torque (Nm)	kW@ 100 rpm	Rated Torque (Nm)	kW@ 100 rpm	Size	D	SW/ RRS	L	Bore L1		G			Length TL1
	35	0.38	0.004	υ.	- 4	-	**	0.0	10	-	16	6.5	16	1	-	9	21
_L	50	2.80	0.03	4.2	0.04	7.0	0.07	1.5	16	-	27	15	27	1	-	39	42
	70	4.90	0.05	7.4	0.08	12.3	0.13	- 1	20	-	35	19	35	2	-	9	51
	⊙ 75	9.80	0.1	14.7	0.15	24.5	0.26		22	-	45	21	45	2	-	13-	55
	1 75	9.80	0.1	14.7	0.15	24.5	0.26	15	22	-	45	21	39	2	-	13.	55
L	95	21.10	0.22	31.7	0.33	52.8	0.55	22	28	65	54	25	49	2	19	90	63
	▶ 99	46.40	0.49	69.6	0.73	116	1.2	52	30	78	65	27	51	2	27	100	72
	100	46.40	0.49	69.6	0.73	116	1.2	æ	35	78	65	35	57	2	27	140	88
SW	110	89	0.93	133.5	1.4	222.5	2.3	14	42	96	85	43	76	3	35	90	108
, the	150	141	1.5	211.5	2.2	352.5	3.7		48	111	96	45	80	3	35	100	115
	190	190	2.0	285	3.0	475	5.0	12	60	129	115	54	102	3	45	140	133
	225	265	2.8	397.5	4.2	662.5	6.9	1.0	65	142	127	64	111	3	45	180	153
	226	327	3.4	490.5	5.1	817.5	8.6	25	70	153	137	70	119	3	51		178
L SW	276	532	5.6	798	8.4	-	(2)	25	75	173	157	80	127	3	60)\$.	200
	280	782	8.2	1173	12.3	-	923	30	80	208	192	80	140	3	70	45	200
	295	1279	13.4	1918.5	20.1	-	583	30	95	253	237	95	162	3	80	19	238
sw	2955	2132	22.3	* 3198	* 33.5	-	1983	30	105	253	237	108	180	3	80	*	264
	300	3047	31.9	4570.5	47.9	-	1921	30	105	272	-	115	180	3	-	72	283
	350	4308	45.1	6462	67.7	-	120	30	115	323	-	128	200	3	-	×.	309

All dimensions are in mm.

For vertical installation contact us.

For RRS/SW maintain gap 'G' at the time of assembly.

Maximum bores can be increased in case of steel hubs. Consult manufacturer.

Contact us for Max Bore with Square Key.

Material : Sintered iron for sizes 035 to 075

Aluminum for sizes 050 to 110 & for all RRS spacers.

Cast Iron for sizes 095 to 350.

- 075 Sintered Iron
- 75 Aluminium
- # For RRS, TL2 = DBSE + 2L 1
- RRS 99 not available
- Only SW version available, L version not available